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Abstract

This article reports a computational method for approximately solving radiation transport problems with aniso-

tropic scattering defined on multislab domains irradiated from one side with a beam of monoenergetic neutral particles.

We assume here that the incident beam may have a monodirectional component and a continuously distributed

component in angle. We begin by defining the target problem representing the class of radiation transport problems

that we are focused on. We then Chandrasekhar decompose the target problem into an uncollided transport problem

with left singular boundary conditions and a diffusive transport problem with regular boundary conditions. We perform

an analysis of these problems to derive the exact solution of the uncollided transport problem and a discrete ordinates

solution in open form to the diffusive transport problem. These solutions are the basis for the definition of a com-

putational method for approximately solving the target problem. We illustrate the numerical accuracy of our method

with three basic problems in radiative transfer and neutron transport, and we conclude this article with a discussion and

directions for future work.
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1. Introduction

Basic and important problems arising in radiation transport theory are modelled by a plane-parallel

stratified (multislab) domain irradiated from one side with a neutral particle beam. Such problems most

often lie within a multidisciplinary scope and, from first principles and with simplifying assumptions, they
are physically represented, mathematically formulated and solved, yielding a first approximation to the

solution of the basic problem in question and giving us directions for the development of mathematical

methods for the solution of model problems ‘‘closer’’ to the basic ones [27]. Representative problems in
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multidisciplinary research areas include: (i) the fundamental problem of radiation shielding – the problem

of keeping a region clear of radiation by shielding the region against a one-sided radiation source [32];

(ii) the classical atmospheric radiative transfer problem of computing the distribution of radiant energy in a
finite plane-parallel planetary atmosphere illuminated from the outer side by a beam of solar radiation

[5,35]; (iii) the problem of estimating the spectral reflectance of forest canopies for remote sensing appli-

cations [17,18,28,29,36] and (iv) the problem of designing a neutron beam filter assembly (a stack of filtering

blocks) suited for boron neutron capture therapy (BNCT) applications [20,23,26,37,39].

The problems listed in the preceding paragraph are, generally speaking, characterized by an incident

beam with a monodirectional (singular) component and/or a continuously distributed (regular) component

in angle. The mixed case (singular and regular) is particularly true of problems (iii) and (iv), where scattered

radiation contributes significantly to the incident particle beam. For an approximate solution to multislab
radiation transport problems with only a continuously distributed incident beam, some of the discrete

ordinates (SN Þ spectral methods developed over the last 10 years by the present author and former col-

laborators can be readily used [2–4,7–12]. For an approximate solution to multislab problems with only a

monodirectional incident beam, we have recently developed (unpublished) a computational method based

on SN spectral methods and inspired mostly on a decomposition technique – the radiation transport

problem is decomposed into an uncollided problem with singular boundary conditions and a diffusive

problem with zero incoming boundary conditions – firstly introduced by Chandrasekhar for solving the

classical albedo problem in atmospheric radiative transfer [5]. It is noteworthy that the methods referred to
in this paragraph do apply to multislab problems with either singular or regular boundary conditions.

In this article, we take a step further and we describe a computational method for efficiently and accurately

solving radiation transport problems with anisotropic scattering defined on a multislab domain irradiated

from one side with a neutral particle beam having a monodirectional component and/or a continuously

distributed component in angle. The method here is essentially that recently developed by us for problems

with only a monodirectional beam, with the necessary modifications to enable us to solve multislab problems

with one-type (singular or regular) or mixed boundary conditions. We believe that the method described in

the present article is relevant, for it solves multislab problems covered by the methods referred to in the
preceding paragraph and multislab problems not covered so far in an efficient and accurate manner.

We outline the remaining sections of this article. In Section 2, we mathematically formulate and perform

an analysis of the target problem that represents the class of radiation transport problems dealt with in this

article. In Section 3, we describe a mathematical method for approximately solving the target problem. In

Section 4, we discuss computational aspects of our method and we illustrate its numerical accuracy with

three basic problems in atmospheric radiative transfer and neutron transport. In Section 5, we conclude this

article with a discussion and directions for further developments and future work.
2. Formulation and analysis of the target problem

2.1. Problem formulation

We begin with a mathematical formulation of the target problem representing a class of radiation

transport problems with anisotropic scattering defined on a multislab domain irradiated from one side with

a monoenergetic neutral particle beam. We consider the slab-geometry transport equation

l
o

oz
wðz;lÞ þ rtðzÞwðz; lÞ ¼ Sðz; lÞ; z 2 X � ½z0; zR�; �16 l6 1: ð1Þ

Here, X is a multislab domain with transparent boundaries [5] denoted by z0 (left) and zR (right), respec-

tively; the quantity w (z; l) is the angular flux of particles traveling in direction l at position z on X; rtðzÞ is
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the macroscopic total cross-section at position z and the remaining notation and nomenclature are standard

in particle transport theory [15,38]. The quantity Sðz; l) is the scattering source given by

Sðz; lÞ ¼ r0ðzÞ
2

X1
‘¼0

ð2‘þ 1Þb‘ðzÞP‘ðlÞ
Z 1

�1

dl0P‘ðl0Þwðz; l0Þ; ð2Þ

where r0ðzÞ is the macroscopic scattering cross-section at position z; P‘ðl) denotes the ‘th-degree Legendre
polynomial and ð2‘þ 1Þb‘ðzÞ is the ‘th-order component of the Legendre expansion of the scattering phase

function at position z. Changes in the meaning of some of the terms in Eq. (1) for radiative transfer problems

are due. For then z is the optical variable, wðz; lÞ denotes the specific intensity of the radiation field, rtðzÞ is
set to one and, as a result, r0ðzÞ is the single scattering albedo [5,35]. The multislab domain consists of R
contiguous and disjoint layers of homogeneous material each, i.e. the quantities rtðzÞ and r0ðzÞ are non-

negative piecewise constant functions of z on X. The transport Eq. (1) is subject to the boundary conditions

wðz0; lÞ ¼ w0dðl� l0Þ þ c0ðlÞ; l > 0; l0 > 0; ð3:1Þ
wðzR;�lÞ ¼ 0; l > 0; ð3:2Þ

where w0 is a nonnegative real; l0 is the cosine of the polar angle defining the direction of incidence of the

monodirectional component of the particle beam upon the left boundary of the multislab domain X; d is to

denote a Dirac distribution and c0ðl), l > 0, is a nonnegative function of l representing the angularly

continuous component of the incident beam. Eqs. (1–3) define the target problem representing the class of

radiation transport problems dealt with in this article.
2.2. A basic approach to solve the target problem

The target problem (1–3) can be approximately solved as follows: (i) we Chandrasekhar decompose the

target problem into, say, a problem A defined by Eq. (1) and the left singular boundary conditions

wAðz0; lÞ ¼ w0dðl� l0Þ, l > 0; l0 > 0, and wAðzR;�lÞ ¼ 0, l > 0, and a problem B defined by Eq. (1) and

the regular boundary conditions wBðz0; lÞ ¼ c0ðlÞ and wBðzR;�lÞ ¼ 0, l > 0; (ii) we solve problem A with

the method recently developed by us (unpublished) and we solve problem B with some of the SN spectral

methods developed in the past and finally (iii) we compose the obtained solutions to problems A and B.

This approach allows for the use of available and accurate methods with good theoretical basis and of

computer programs ready and functional. However, a closer look at such an approach reveals a serious
drawback: it is concerned with the formulation (and solution) of two diffusive transport problems – one

coming from the Chandrasekhar�s decomposition of problem A and the other is just problem B. Since

diffusive problems in the field are algebraically hard to work out and computationally costly [1,25], we are

convinced that this is a drawback serious enough to think of a different approach as a basis for a com-

putational method for approximately solving the target problem Eqs. (1–3). So, we discard that way leading

to two diffusive transport problems and we instead directly Chandrasekhar decompose the target problem

(1–3) into the uncollided transport problem

l
o

oz
wuðz; lÞ þ rtðzÞwuðz; lÞ ¼ 0; z 2 X; �16 l6 1; ð4Þ

with the left singular boundary conditions

wuðz0; lÞ ¼ w0dðl� l0Þ; wuðzR;�lÞ ¼ 0; l > 0; l0 > 0; ð5Þ

and the diffusive transport problem
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l
o

oz
wdðz; lÞ þ rtðzÞwdðz; lÞ

¼ r0ðzÞ
2

X1
‘¼0

ð2‘þ 1Þb‘ðzÞP‘ðlÞ
Z 1

�1

dl0P‘ðl0Þwdðz;l0Þ þ suðz; lÞ; z 2 X; �16 l6 1; ð6Þ

with the regular boundary conditions

wdðz0; lÞ ¼ c0ðlÞ; wdðzR;�lÞ ¼ 0; l > 0; ð7Þ

so that wðz; lÞ ¼ wuðz; lÞ þ wdðz; lÞ; z0 6 z6 zR; �16 l6 1. The quantity

suðz; lÞ � r0ðzÞ
2

X1
‘¼0

ð2‘þ 1Þb‘ðzÞP‘ðlÞ
Z 1

�1

dl0P‘ðl0Þwuðz; l0Þ; ð8Þ

is a space-dependent anisotropic source given in terms of the solution wuðz; lÞ to the uncollided transport

problem (4) and (5). With this approach, we formulate and need to solve only one diffusive problem.

2.3. Analysis of the uncollided and diffusive problems

We hereafter perform an analysis of both the uncollided transport problem (4) and (5) and the diffusive
transport problem (6) and (7) in order to get analytical results important to define and substantiate our

computational method.

2.3.1. The uncollided problem

We begin our analysis with the uncollided transport problem (4) and (5). Since the uncollided problem

(4) and (5) represents an auxiliary problem defined in a purely absorbing multislab domain with transparent

boundaries, with no interior source and with an incident particle beam upon the left ðz0Þ boundary only, we

must have wuðz; lÞ ¼ 0, for l < 0 and for all z 2 X. For l > 0 and z 2 X;wuðz; lÞ > 0 and we can write the
uncollided transport Eq. (4) in the integral formZ z

z0

1

wuðv; lÞ
o

ov
wuðv;lÞdv ¼ � 1

l

Z z

z0

rtðvÞdv; z 2 X; l > 0; ð9Þ

where the integral on the right side of the equal sign in Eq. (9) is the number of particle mean free paths

[15,38] on the interval (z0; z). We solve Eq. (9) for wuðz; lÞ and we successively obtain

lnwuðv; lÞjzz0 ¼ � 1

l

Z z

z0

rtðvÞdv; ð10Þ
ln
wuðz; lÞ
wuðz0; lÞ

¼ � 1

l

Z z

z0

rtðvÞdv; ð11Þ

and

wuðz; lÞ ¼ wuðz0; lÞ exp
 

� 1

l

Z z

z0

rtðvÞdv
!
; z 2 X; l > 0: ð12Þ

We make use of the left singular boundary conditions (5) and the uncollided transport problem (4) and (5)

has the closed form solution
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wuðz; lÞ ¼ w0dðl� l0Þ exp � 1

l

Z z

z0

rtðvÞdv

0
B@

1
CA; z 2 X; l > 0; l0 > 0;

wuðz; lÞ ¼ 0; z 2 X; l < 0:

8>>><
>>>:

ð13Þ

At this point, we may substitute the closed form solution (13) into the anisotropic source (8) to completely

define the diffusive transport problem (6) and (7). Let us firstly calculate the space-dependent anisotropic

source (8). We substitute solution (13) into the source (8) and we successively obtain

suðz; lÞ ¼ r0ðzÞ
2

X1
‘¼0

ð2‘þ 1Þb‘ðzÞP‘ðlÞ
Z 1

�1

dl0P‘ðl0Þwuðz; l0Þ

¼ r0ðzÞ
2

X1
‘¼0

ð2‘þ 1Þb‘ðzÞP‘ðlÞ
Z 1

0

dl0

"
P‘ðl0Þw0dðl0 � l0Þ exp

 
� 1

l0

Z z

z0

rtðvÞdv
!#

¼ r0ðzÞ
2

X1
‘¼0

ð2‘þ 1Þb‘ðzÞP‘ðlÞP‘ðl0Þw0 exp

 
� 1

l0

Z z

z0

rtðvÞdv
!

¼ w0 exp

 
� 1

l0

Z z

z0

rtðvÞdv
!
r0ðzÞ
2

X1
‘¼0

ð2‘þ 1Þb‘ðzÞP‘ðlÞP‘ðl0Þ: ð14Þ
2.3.2. The diffusive problem

We now perform an analysis of the diffusive transport problem (6) and (7). We decompose the multislab

domain X into R contiguous and disjoint uniform subdomains (layers) and we define the local diffusive

transport problems

l
o

oz
wd

r ðz; lÞ þ rt;rw
d
r ðz; lÞ ¼

r0;r

2

X1
‘¼0

ð2‘þ 1Þb‘;rP‘ðlÞ
Z 1

�1

dl0P‘ðl0Þwd
r ðz; l0Þ

þ sur ðz; lÞ; zr�1 6 z6 zr; �16 l6 1; r ¼ 1 : R; ð15Þ

with wd
1ðz0; lÞ ¼ c0ðlÞ; wd

RðzR;�lÞ ¼ 0, l > 0, and with angular flux continuity conditions at layer inter-

faces, i.e.

wd
j ðzj;lÞ ¼ wd

jþ1ðzj; lÞ; �16l6 1; l 6¼ 0; j ¼ 1 : R� 1; ð16Þ

where zj, j ¼ 1: R� 1, is to denote the jth layer interface. We remark that if R is equal to 1, then the

multislab domain X consists of one single layer. We note further that material parameters are constant

within each layer, i.e. rtðzÞ ¼ rt;r and r0ðzÞ ¼ r0;r, zr�1 6 z6 zr, for r ¼ 1 : R, and that the space-dependent

anisotropic source sur ðz; lÞ that appears in Eq. (15) can be expressed as

sur ðz; lÞ ¼ w0 exp

 
� 1

l0

Z z

z0

rtðvÞdv
!
r0;r

2

X1
‘¼0

ð2‘þ 1Þb‘;rP‘ðl0ÞP‘ðlÞ: ð17Þ

Result (17) can be reformulated further and written in the form
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sur ðz; lÞ ¼ s0r ðlÞ exp
�
� rt;rz

l0

�
; �16l6 1; zr�1 6 z6 zr; r ¼ 1 : R; ð18Þ

where

s0r ðlÞ �
r0;r

2

X1
‘¼0

ð2‘
 

þ 1Þb‘;rP‘ðl0ÞP‘ðlÞ
!
w0 exp

�
� kr�1

l0

�
; ð19Þ
kr�1 � Kr�1 � rt;rzr�1; ð20Þ

and

Kr�1 �
Z zr�1

z0

rtðvÞdv ¼
Xr�1

r0¼1

rt;r0Dzr0 ; ð21Þ

with Dzr0 � zr0 � zr0�1, r0 ¼ 1 : R, and K0 ¼ 0.

We follow our analysis by considering standard SN approximations [25] to the local diffusive Eq. (15) in

the form

lm
d
dz

wd
r;mðzÞ þ rt;rw

d
r;mðzÞ ¼

r0;r

2

XLr
‘¼0

ð2‘þ 1Þb‘;rP‘ðlmÞ
XN
n¼1

xnP‘ðlnÞwd
r;nðzÞ þ sur;mðzÞ;

m ¼ 1 : N ; zr�1 6 z6 zr; r ¼ 1 : R; ð22Þ

where wd
r;mðzÞ ffi wd

r ðz; lmÞ, sur;mðzÞ ffi sur ðz; lmÞ and flmg, m ¼ 1 : N , is a finite set of angular directions on the

interval [)1,1]. We remark that the nonnegative integers Lr in Eq. (22), r ¼ 1 : R, indicate that the Legendre
expansions of the scattering phase functions in corresponding layers have been truncated after (Lr þ 1)

terms. We note further that continuity conditions hold at layer interfaces and that we use here the standard

discrete boundary conditions [25]

wd
1;mðz0Þ ¼ c0ðlmÞ; wd

R;�mðzRÞ ¼ 0; lm > 0; ð23Þ

where the subscript �m is to denote the angular direction �lm.

Solution to the system of SN Eq. (22) can be expressed in terms of nontrivial elementary solutions to the

homogeneous version of Eq. (22) and particular solutions in the open form [2,10,33]

wd
r;mðzÞ ¼

XN
i¼1

ar;iw
d
r;mðz; mr;iÞ þ wd

r;m;pðzÞ; zr�1 6 z6 zr; m ¼ 1 : N ; r ¼ 1 : R; ð24Þ

where ar;i, r ¼ 1 : R, i ¼ 1 : N , are scalars depending upon the discrete boundary conditions (23);

wd
r;mðz; mr;iÞ � ar;mðmr;iÞ exp

rt;rðz� zr;iÞ
mr;i

� �
; zr�1 6 z6 zr; i ¼ 1 : N ; m ¼ 1 : N ; r ¼ 1 : R; ð25Þ

are elementary (exponential) solutions to the homogeneous version of the SN Eq. (22), with zr;i, i ¼ 1 : N ,

being appropriate positions on the layer r; mr;i and ar;mðmr;iÞ, r ¼ 1 : R, i ¼ 1 : N , m ¼ 1 :N, are the separation

constants and the angular components [10,33] of the elementary solutions (25), respectively;

wd
r;m;pðzÞ ¼ fr;m exp

�
� rt;rz

l0

�
; zr�1 6 z6 zr; m ¼ 1 : N ; r ¼ 1 : R; ð26Þ
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are the particular solutions used by Chandrasekhar to express the general solution to the classical albedo

problem in atmospheric radiative transfer [5] and fr;m, r ¼ 1 : R, m ¼ 1 : N , are constants to be determined

upon substitution of the particular solution (26) into Eq. (22). As noted by Siewert in a recent work [33], the
particular solution (26) is not valid in the (unlikely) event that l0 be equal to one of the separation constants

mr;i, i ¼ 1 : N . So, we are assuming here that l0 does not match any r;i for all i and r. We assume further that

the separation constants are bounded, i.e. there exists a positive real number K such that jmr;ij < K for all r
and i. Accordingly, the special conservative problem of radiative transfer [5,33] will not be considered in

this article.

The separation constants and the angular components of the elementary solutions (25) can be generated

with a method reported by the present author [10], from which we quote the main results. Upon substi-

tution of the elementary solutions (25) into the homogeneous version of the SN Eq. (22), and after some
operations, we obtain

lm

mr;i
ar;mðmr;iÞ þ ar;mðmr;iÞ ¼

XLr
‘¼0

ð2‘þ 1Þ
2

c‘;rP‘ðlmÞ
XN
n¼1

xnP‘ðlnÞar;nðmr;iÞ;

m ¼ 1 : N ; i ¼ 1 : N ; r ¼ 1 : R; ð27Þ

where c‘;r � ðr0;rb‘;rÞ=rt;r, r ¼ 1 : R, ‘ ¼ 0 : Lr. Since the ‘-dependent N-term finite series on the right hand

side of Eq. (27) is just the Chandrasekhar polynomial g0r;‘ðmÞ [5,33] evaluated at mr;i, it is not difficult to draw
from a parity analysis of Eq. (27) that the constants mr;i appear in pairs of � numbers and that the angular

components satisfy the relation ar;mðmr;iÞ ¼ ar;�mð�mr;iÞ, for all r, m and i. The former conclusion will be

helpful throughout the article whilst the later one will be brought to further discussion in the final section of

this article. Further reformulation leads us to the R algebraic eigenvalue problems

XN
n¼1

1

lm

(
� dmn þ

XLr
‘¼0

ð2‘þ 1Þ
2

c‘;rP‘ðlmÞP‘ðlnÞ
" #

xn

)
ar;nðmr;iÞ ¼

1

mr;i
ar;mðmr;iÞ;

m ¼ 1 : N ; i ¼ 1 : N ; r ¼ 1 : R; ð28Þ

where dmn is the Kronecker delta. In compact notation, we may write

A
r
~arðmr;iÞ ¼

1

mr;i
~arðmr;iÞ; r ¼ 1 : R; ð29Þ

where A
r
with entries

Ar
m;n �

1

lm

(
� dmn þ

XLr
‘¼0

ð2‘þ 1Þ
2

c‘;rP‘ðlmÞP‘ðlnÞ
" #

xn

)
; m ¼ 1 : N ; n ¼ 1 : N ; r ¼ 1 : R; ð30Þ

is a real square matrix whose eigenvalues ðmr;iÞ�1
, i ¼ 1 : N , are the reciprocals of the separation constants

mr;i and whose corresponding eigenvectors

~arðmr;iÞ � ½ar;1ðmr;iÞ; ar;2ðmr;iÞ; . . . ; ar;N ðmr;iÞ�T; i ¼ 1 : N ; ð31Þ

are ordered sets of angular components of the elementary solutions (25) in the subdomain (layer) r. So-
lution to the eigenvalue problems (29) can be achieved by means of modern mathematical software systems

such as MAPLE [21] or even with conventional matrix eigensystem packages such as LINPACK and

EISPACK [14,34]. Once the algebraic eigenvalue problems (29) are solved, the elementary solutions (25)

become readily available. In this article, we assume that the separation constants mr;i are distinct pairs of �
real numbers and so, f~arðmr;iÞg, i ¼ 1 : N , constitute a full (N ) set of eigenvectors [31].
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The constants fr;m, m ¼ 1 : N , in the particular solution (26) can be efficiently computed with the help of

the parity relation P‘ð�lmÞ ¼ ð�1Þ‘P‘ðlmÞ for the Legendre polynomials and through a not-so-straight-

forward use of matrix algebra for splitting and handling the matrix equation resulting from the substitution
of the particular solution (26) into the SN Eq. (22). A description of these algebraic steps can be found in a

recent work by Siewert [33]. For the sake of continuity of presentation, we extract from [33] the main results

and we quote them here. For fixed r, the constants fr;m in the particular solution (26) are the entries of the

ðN=2Þ-dimensional column matrices

~f þ
r ¼ � 1

2
l0M

�1 I
��

� l2
0F r

E
r

��1
~dr

�
þ l0F r

~cr
�
þ I
�

� l2
0Er

F
r

��1

~cr
�

þ l0Er
~dr

��
ð32Þ

and

~f �
r ¼ � 1

2
l0M

�1 I
��

� l2
0F r

E
r

��1
~dr

�
þ l0F r

~cr
�
� I
�

� l2
0Er

F
r

��1

~cr
�

þ l0Er
~dr

��
; ð33Þ

where

~f þ
r � fr;1; � � � ; fr;N=2

� �T ð34Þ

and

~f �
r � fr;N=2þ1; � � � ; fr;N

� �T
: ð35Þ

The quantities E
r
� ½I � ðTþ

r
þ T�

r
Þ�M�1 and F

r
� ½I � ðTþ

r
� T�

r
Þ�M�1 are (N=2)-dimensional real square

matrices. The symbol I is to denote the (N=2)-dimensional identity matrix and the symbol M is to denote

the (N=2)-dimensional diagonal matrix whose entries are Mii ¼ li, i ¼ 1 : N=2. The quantities Tþ
r
and T�

r
denote (N=2)-dimensional real square matrices with entries

Tþ
r;m;n ¼ xn

XLr
‘¼0

ð2‘þ 1Þ
2

c‘;rP‘ðlmÞP‘ðlnÞ
" #

; m ¼ 1 : N=2; n ¼ 1 : N=2; ð36Þ

and

T�
r;m;n ¼ xn

XLr
‘¼0

ð2‘þ 1Þ
2

c‘;rð
"

� 1Þ‘P‘ðlmÞP‘ðlnÞ
#
; m ¼ 1 : N=2; n ¼ 1 : N=2; ð37Þ

respectively. The quantities ~cr and ~dr are (N=2)-dimensional column matrices given by

h0r;1
h

þ h0r;N=2þ1; h
0
r;2 þ h0r;N=2þ2; � � � ; h0r;N=2 þ h0r;N

iT
ð38Þ

and

h0r;1
h

� h0r;N=2þ1; h
0
r;2 � h0r;N=2þ2; � � � ; h0r;N=2 � h0r;N

iT
; ð39Þ

respectively, with h0r;m � s0r;m=rt;r and s0r;m ffi s0r ðlmÞ, m ¼ 1 : N , viz definition (19). We may run over all r, using
results (32) through (39) to determine the constants fr;m in the particular solution (26) for every layer and, at this

point, the open form solution (24) to the SN local Eq. (22) in every layer of the multislab domain is complete.

We now proceed to Section 3, where we describe a computational method to yield an approximate

solution to the target problem (1–3).
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3. A computational method for approximately solving the target problem

3.1. Basic relations

The computational method that we describe in this section is to provide an approximation to the so-

lution wðz; lÞ ¼ wuðz; lÞ þ wdðz; lÞ of the target problem (1–3). The approximate solution we seek is a

distribution on z and l of the form

wN ðz; lÞ ¼ wuðz; lÞ þ wd
N�1ðz; lÞ; z0 6 z6 zR; �16l6 1; ð40Þ

where wuðz; l) means that we have directly incorporated the closed form (13) into our approximate solution

(40) and wd
N�1ðz; lÞ, the diffuse component of our approximate solution (40), is the well-known spherical

harmonics (PN�1Þ approximation [15,25] to the solution of the local diffusive Eq. (15) given by

wd
N�1ðz; lÞ ¼

XN�1

‘¼0

ð2‘þ 1Þ
2

/d
r;‘ðzÞP‘ðlÞ; �16 l6 1; zr�1 6 z6 zr; r ¼ 1 : R; ð41Þ

where wd
N�1ðz; lmÞ ¼ wd

r;mðzÞ, m ¼ 1 : N , zr�1 6 z6 zr, r ¼ 1 : R. The quantities /d
r;‘ðzÞ, ‘ ¼ 0 : N � 1, are the

PN�1 angular moments

/d
r;‘ðzÞ ¼

XN
t¼1

xtP‘ðltÞwd
r;tðzÞ; zr�1 6 z6 zr; r ¼ 1 : R; ð42Þ

and wd
r;tðzÞ is given by the open form solution (24). Results (41) and (42) can be shown to come up from two

equivalent formulations of the local diffusive problem (15) – the SN formulation (22) with the discrete

boundary conditions (23) and the classical PN�1 formulation with corresponding boundary conditions due

to Mark [15,25]. We remark that the diffuse component (41) of our approximate solution (40) is continuous

in the z and l variables. Results (40)–(42) are the basis for the method described in this section.

3.2. Computational method

Having in mind that the quantities of interest in a radiation transport problem may be problem-

dependent [38], we have thought of a computational method having a numerical component and an an-

alytical component. The numerical component is to provide layer-average

w
d

r;m � 1

Dzr

Z zr

zr�1

dzwd
r;mðzÞ; m ¼ 1 : N ; r ¼ 1 : R; ð43Þ

and layer-edge values for wd
r;mðzÞ without having to determine the scalars ar;i, r ¼ 1 : R, i ¼ 1 : N , in the open

form solution (24). The numerical component is thus suited to problems where the quantities of interest are,

for example, the angular distribution of particles leaving the multislab domain and layer averages such as

scalar fluxes. For the angular distribution of leaving particles, we can make direct use of expressions (42)

through (40) at z ¼ z0 for l < 0 and at z ¼ zR for l > 0. For layer-average scalar fluxes, the zeroth-order
(‘ ¼ 0) angular moments (42) and the layer averages (43) can be brought together to yield the diffuse

contribution to the scalar flux

/
d

r;0 ¼
XN
t¼1

xtw
d

r;t; r ¼ 1 : R: ð44Þ

It is not difficult to show that the uncollided contribution to the layer-average scalar flux is
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/
u

r;0 �
1

Dzr

Z zr

zr�1

dz
Z 1

�1

dlwuðz; lÞ

¼ l0

rt;rDzr
w0 exp

�
� kr�1

l0

�
exp

��
� rt;rzr�1

l0

�
� exp

�
� rt;rzr

l0

��
; ð45Þ

and so, our approximation to layer-average scalar fluxes might be /r;0 ¼ /
u

r;0 þ /
d

r;0, r ¼ 1 : R. The ana-
lytical component of our method is to close up the open form solution (24) by solving a system of linear

algebraic equations whose unknowns are the scalars ar;i. Inputs to the system are layer-edge values for

wd
r;mðzÞ supplied by the numerical component. The analytical component is to be applied when the angular

distribution of particles wN ðz; l) at any position z is sought, for then we can make direct use of results (24)–

(26) and (42) through (40). For radiative transfer problems, the partial radiative heat fluxes [5,35]

q�N ðzÞ ¼ 2p
Z 1

0

lwN ðz;�lÞdl ¼ 2p
Z 1

0

lwuðz;

2
4 � lÞdlþ

Z 1

0

lwd
N�1ðz;� lÞdl

3
5

¼ 2p

(
H�

0

Z 1

0

lw0dðl� l0Þ exp
"
� 1

l

Z z

z0

rtðvÞdv
#
dlþ

XN�1

‘¼0

ð2‘þ 1Þ
2

/d
r;‘ðzÞð � 1Þ‘

Z 1

0

lP‘ðlÞdl
)

¼ 2p H�
0 l0w0 exp

�(
� ðkr�1 þ rt;rzÞ

l0

�
þ
XN�1

‘¼0

ð2‘þ 1Þ
2

/d
r;‘ðzÞ

ð�1Þ‘

2

XN
m¼1

xm
ðlm þ 1Þ

2
P‘

lm þ 1

2

� �)
;

ð46Þ

where H�
0 is the unit step function ðHþ

0 ¼ 1 and H�
0 ¼ 0), as well as the net radiative heat flux

qN ðzÞ ¼ qþN ðzÞ � q�N ðzÞ; ð47Þ

can be determined at any z on a layer r with results (24)–(26) and (42). We describe next either component

of our computational method.

3.2.1. The numerical component

The numerical component of our method is a numerical method designed for solving the SN diffusive

problem (22) and (23) with no spatial truncation error. That is to say, the numerical solution of the SN
diffusive problem (22) and (23) generated by our numerical method agrees to the analytical solution of the

same problem on corresponding layer-edge points, apart from computational finite arithmetic consider-

ations [6] and regardless of layer thicknesses. Our numerical method is an extension to anisotropic scat-

tering of arbitrary order and space-dependent anisotropic sources of the former spectral Green�s function
(SGF) method developed some years ago [2]. For this reason, we hereafter refer to our numerical method as

the extended spectral Green�s function (ESGF) method.
The ESGF method has two main ingredients: one is standard and the other is nonstandard. The

standard ingredient is the derivation of zeroth-order spatial balance equations defined on each layer of the

multislab domain X. So, if we integrate the SN diffusive Eq. (22) for fixed r over the interval ðzr�1; zrÞ, divide
the resulting equations by Dzr and let r vary from 1 to R, then we get the spatial balance equations

lm

Dzr
ðwd

r;m � wd
r�1;mÞ þ rt;rw

d

r;m

¼ r0;r

2

XLr
‘¼0

ð2‘þ 1Þb‘;rP‘ðlmÞ
XN
n¼1

xnP‘ðlnÞw
d

r;n þ sur;m; r ¼ 1 : R; m ¼ 1 : N ; ð48Þ
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where wd
j;m � wd

r;mðzjÞ, j ¼ r � 1 : r, r ¼ 1 : R, are layer-edge angular fluxes,

sur;m � 1

Dzr

Z zr

zr�1

dzsur;mðzÞ ¼ s0r;m
l0

rt;rDzr
exp

��
� rt;rzr�1

l0

�
� exp

�
� rt;rzr

l0

��
; ð49Þ

and w
d

r;m, r ¼ 1 : R, m ¼ 1 : N , is given by definition (43). We remark that the notation used in the spatial

balance Eq. (48) is well suited for indicating our assumption of angular flux continuity at layer interfaces.

The standard zeroth-order spatial balance Eq. (48) together with the discrete boundary conditions (23)
form a system of linear algebraic equations whose unknowns are layer-average and layer-edge angular

fluxes. Such a system does not have a unique solution because there are more unknowns than equations. A

simple count gives us NðRþ 1Þ layer-edge angular fluxes, NR layer-average angular fluxes, NR balance

equations and N boundary equations. The net score is Nð2Rþ 1Þ unknowns against NðRþ 1Þ equations.
So, a total of Nð2Rþ 1Þ � NðRþ 1Þ ¼ NR additional equations are needed or, equivalently, N additional

equations per layer relating layer-edge and layer-average fluxes.

The nonstandard ingredient is to provide NR equations to the system of NðRþ 1Þ equations referred to

in the preceding paragraph. These NR additional equations are the ESGF auxiliary equations

w
d

r;m ¼
XN=2

u¼1

hr;m;uw
d
r�1;u þ

XN
u¼N=2þ1

hr;m;uw
d
r;u þ gr;m; r ¼ 1 : R; m ¼ 1 : N ; ð50Þ

where the layer-dependent coefficients hr;m;u and gr;m are determined so that the analytical solution (24) be

preserved by the ESGF auxiliary Eq. (50), for arbitrary scalars ar;i and for wd
r;m;pðzÞ given by the particular

solution (26). Let us firstly calculate the layer-average angular fluxes in terms of the analytical results (24)–
(26). If we substitute results (24)–(26) into definition (43), then we obtain, after some Calculus,

w
d

r;m ¼
XN
i¼1

ar;iar;mðmr;iÞ
mr;i

rt;rDzr
exp

rt;rðzr � zr;iÞ
mr;i

� ��
� exp

rt;rðzr�1 � zr;iÞ
mr;i

� ��

þ l0fr;m
rt;rDzr

exp

��
� rt;rzr�1

l0

�
� exp

�
� rt;rzr

l0

��
; r ¼ 1 : R; m ¼ 1 : N : ð51Þ

Since the ESGF auxiliary Eq. (50) are to preserve the analytical solution (24) for arbitrary scalars ar;i and
for wd

r;m;pðzÞ given by (26), we substitute results (51) and (24)–(26) evaluated at zr�1 or zr, where appropriate,
into the ESGF auxiliary Eq. (50) for fixed r to obtain

XN
i¼1

ar;iar;mðmr;iÞ
mr;i

rt;rDzr
exp

rt;rðzr � zr;iÞ
mr;i

� ��
� exp

rt;rðzr�1 � zr;iÞ
mr;i

� ��

þ l0fr;m
rt;rDzr

exp

��
� rt;rzr�1

l0

�
� exp

�
� rt;rzr

l0

��

¼
XN=2

u¼1

hr;m;u
XN
i¼1

ar;iar;uðmr;iÞ exp
rt;rðzr�1 � zr;iÞ

mr;i

� �"
þ fr;u exp

�
� rt;rzr�1

l0

�#

þ
XN

u¼N=2þ1

hr;m;u
XN
i¼1

ar;iar;uðmr;iÞ exp
rt;rðzr � zr;iÞ

mr;i

� �"
þ fr;u exp

�
� rt;rzr

l0

�#
þ gr;m; ð52Þ

for m ¼ 1 : N . Since Eq. (52) hold for arbitrary scalars ar;i, they must hold for ar;i set equal to zero for all i
from 1 to N . Therefore, we must have
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gr;m ¼ l0fr;m
rt;rDzr

exp

��
� rt;rzr�1

l0

�
� exp

�
� rt;rzr

l0

��

� exp

�"
� rt;rzr�1

l0

�XN=2

u¼1

hr;m;ufr;u þ exp

�
� rt;rzr

l0

� XN
u¼N=2þ1

hr;m;ufr;u

#
; m ¼ 1 : N : ð53Þ

We substitute result (53) into Eq. (52), we simplify terms and we arrive at

XN
i¼1

ar;iar;mðmr;iÞ
mr;i

rt;rDzr
exp

rt;rðzr � zr;iÞ
mr;i

� ��
� exp

rt;rðzr�1 � zr;iÞ
mr;i

� ��

¼
XN
i¼1

ar;i exp
rt;rðzr�1 � zr;iÞ

mr;i

� �XN=2

u¼1

hr;m;uar;uðmr;iÞ
"

þ exp
rt;rðzr � zr;iÞ

mr;i

� � XN
u¼N=2þ1

hr;m;uar;uðmr;iÞ
#
; ð54Þ

for m ¼ 1 : N . Since Eq. (54) hold for arbitrary scalars ar;i, they must hold for the N ordered sets of scalars

ðd1j; d2j; d3j; . . . ; dNjÞ, j ¼ 1 : N . These ordered sets of scalars yield, for fixed m, the system of N linear

algebraic equations

mr;jar;mðmr;jÞ
rt;rDzr

exp
rt;rðzr � zr;jÞ

mr;j

� ��
� exp

rt;rðzr�1 � zr;jÞ
mr;j

� ��

¼ exp
rt;rðzr�1 � zr;jÞ

mr;j

� �XN=2

u¼1

hr;m;uar;uðmr;jÞ þ exp
rt;rðzr � zr;jÞ

mr;j

� � XN
u¼N=2þ1

hr;m;uar;uðmr;jÞ; j ¼ 1 : N ;

ð55Þ

in the N unknowns hr;m;u, u ¼ 1 : N .
We now choose appropriate positions zr;j, j ¼ 1 : N . Once we have assumed that the layer-dependent

separation constants are pairs of � real numbers, we set zr;j ¼ zr for mr;j > 0 and zr;j ¼ zr�1 for mr;j < 0. With

this choice, the arguments of the exponentials in Eq. (55) are nonpositive real numbers. This makes all

exponential evaluations lie within the interval (0,1] and precludes possible computer overflow exceptions

when solving the system (55) on a digital computer. With our choice, Eq. (55) may be written with respect

to the sign of the separation constants as

mr;jar;mðmr;jÞ
rt;rDzr

1

�
� exp

�
� rt;rDzr

mr;j

��

¼ exp

�
� rt;rDzr

mr;j

�XN=2

u¼1

hr;m;uar;uðmr;jÞ þ
XN

u¼N=2þ1

hr;m;uar;uðmr;jÞ; mr;j > 0; ð56Þ

and

mr;j
		 		ar;mðmr;jÞ

rt;rDzr
1� exp

 
� rt;rDzr

mr;j
		 		

!" #

¼
XN=2

u¼1

hr;m;uar;uðmr;jÞ þ exp � rt;rDzr
mr;j
		 		

 ! XN
u¼N=2þ1

hr;m;uar;uðmr;jÞ; mr;j < 0: ð57Þ
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With r fixed in Eqs. (56) and (57), we may run over all m and, for each m, we obtain a corresponding system

of N linear algebraic equations in the N unknowns hr;m;u, u ¼ 1 : N . With the coefficients hr;m;u, m ¼ 1 : N ,

u ¼ 1 : N , determined, we may go back to expression (53) to calculate the coefficients gr;m, m ¼ 1 : N . We
run over all r, calculating the layer-dependent coefficients hr;m;u and gr;m and completely defining the ESGF

auxiliary Eq. (50). Eqs. (48) and (50) and the boundary Eq. (23) constitute the ESGF equations of the SN
diffusive problem (22) and (23). For the numerical solution of the ESGF equations, we use the one-cell

block inversion (CBI) iterative scheme [2,7,9] and we determine the layer-average w
d

r;m and the layer-edge

angular fluxes wd
r;mðzr�1Þ and wd

r;mðzrÞ for all r and m with no spatial truncation error.

3.2.2. The analytical component

The analytical component of our method is a local reconstruction scheme of the analytical solution (24).
It is based upon solving an r-local system of N linear algebraic equations whose unknowns are the scalars

ar;i, r fixed, i ¼ 1 : N . Inputs to the system are the layer-edge angular fluxes wd
r;mðzjÞ, j ¼ r � 1 : r, that are

incident upon the layer of interest [4,8]. Here, the layer-edge angular fluxes are those generated by the

ESGF method. Since the numerical solution of the SN diffusive problem (22) and (23) generated by the

ESGF method is free from spatial truncation error, the numerical values for layer-edge angular fluxes

generated by the ESGF method are exactly the same as those generated by the analytical solution (24) in

closed form on corresponding layer-edge points. Accordingly, the system of N linear algebraic equations

wd
r�1;m ¼

XN
i¼1

ar;iar;mðmr;iÞ exp
rt;rðzr�1 � zr;iÞ

mr;i

� �
þ fr;m exp

�
� rt;rzr�1

l0

�
; lm > 0; ð58Þ

and

wd
r;m ¼

XN
i¼1

ar;iar;mðmr;iÞ exp
rt;rðzr � zr;iÞ

mr;i

� �
þ fr;m exp

�
� rt;rzr

l0

�
; lm < 0; ð59Þ

in the N unknowns ar;i, i ¼ 1 : N , must hold for arbitrary r. With the system (58) and (59) solved and the

scalars ar;i, i ¼ 1 : N , determined, we can make direct use of results (24)–(26) and (42) through (40) to

reconstruct the angular distribution wN ðz; l) at any position z on the layer of interest. We stress here that

our reconstruction scheme is local in the sense that calculation of the scalars ar;i and later reconstruction of

the angular distribution wNðz; l) are confined to the layer of interest. We may reconstruct over as many
layers as we wish in this layer-by-layer process. It is important to note here that if r ¼ 1, then

wd
r�1;m ¼ c0ðlmÞ; lm > 0, and that if r ¼ R, then wd

r;m ¼ 0; lm < 0:
In the next section, we illustrate the numerical accuracy of our computational method with numerical

results for basic problems in atmospheric radiative transfer and neutron beam transport.
4. Computational aspects and numerical results

4.1. Test problems and numerical results

We now illustrate the numerical accuracy of our method with three basic problems: two problems of

atmospheric radiative transfer and one problem of neutron beam transport. We should notice that the

numerical results reported here come from the execution of our FORTRAN [30] program on an IBM-

compatible PC (1.4 GHz-clock Intel Pentium 4 processor and 256 Mb of RAM) running on GNU/Linux,

version 0.2. The executable file of our program has been generated with the g77 GNU Fortran package,

release 2.95. The execution (CPU) times for the three problems were 189.4, 7.5 and 53.1 s, respectively.
These times were generated with the TIME GNU internal routine, option �S.
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4.1.1. Test problem 1

The first problem is a challenging test problem based on a haze L ¼ 82 scattering model posed in 1977

by the Radiation Commission of the International Association of Meteorology and Atmospheric Physics
[24]. The problem here is the second of the five test problems posed by the Commission. The haze is

modelled by a single homogeneous plane-parallel layer with optical thickness Dz1 ¼ 1 and single scattering

albedo r0;1 ¼ 0:9. The haze 83-term scattering phase function data have been extracted from a work of

Garcia and Siewert [19]. The boundary conditions here are defined by z0 ¼ 0, z1 ¼ 1, w0 ¼ 0:5 in units of

power per unit area per unit frequency interval per steradian, l0 ¼ 1 and c0ðlÞ ¼ 0 (no regular component)

in Eq.(3). In Tables 1 and 2, we present numerical results for the diffuse component wd
399ðz; lÞ of our ap-

proximate solution w400ðz; l) and for the radiant heat fluxes q�400ðzÞ and q400 (z) in units of power per unit

area per unit frequency interval, respectively. We are happy to notice that, except for the l ¼ 0 boundary
values, at which the intensity of the radiation field is expected to be discontinuous (and therefore the finite

Legendre series (41) is not expected to work soundly), the results in Table 1 agree to within � 1 in the fourth

figures with corresponding N -converged results generated with the facile (FN Þ method [19]. Also, the results

in Table 2 agree in all figures given to corresponding converged FN results quoted in [19].

4.1.2. Test problem 2

The second problem is actually a set of three multislab radiative transfer problems all based on a six-

layer model for a stratified atmosphere described in a work of Devaux et al. [13]. Each of the six layers has
the same scattering law but the single scattering albedo is allowed to be different in each layer. The optical

thickness Dzr and single scattering albedo r0;r for each layer are provided in Table 3. The scattering law is

approximated by the L ¼ 8 scattering phase function data given in Table 4. The boundary data defining the

problems in the set are z0 ¼ 0, z6 ¼ 21, w0 ¼ 0 (no singular component) and c0ðlÞ ¼ lb in units of power per

unit area per unit frequency interval per steradian, l > 0, where the integer b specifies each problem in the

set, b ¼ 0 : 2.
Table 1

Numerical results for the diffuse component wd
399ðz; lÞ

l z ¼ 0 z ¼ 1=10 z ¼ 1=2 z ¼ 3=4 z ¼ 1

)1.0 0.0263486 0.0251844 0.0137540 0.0067054

)0.8 0.0313669 0.0286420 0.0160966 0.0078552

)0.6 0.0390112 0.0365141 0.0220980 0.0110620

)0.4 0.0534913 0.0521415 0.0368542 0.0202307

)0.2 0.0667894 0.0705000 0.0666970 0.0463003

)0.0 0.0341578 0.0680172 0.0939988 0.0974843

0.0 0.0680172 0.0939988 0.0974843 0.0404453

0.2 0.0253403 0.0915927 0.1138156 0.1239562

0.4 0.0190679 0.0883332 0.1225035 0.1482369

0.6 0.0249089 0.1153349 0.1622289 0.2005148

0.8 0.0560207 0.2384866 0.3225506 0.3867963

1.0 0.6290471 2.2483366 2.7414049 2.9750950

Table 2

Numerical results for radiant heat fluxes

z ¼ 0 z ¼ 1=10 z ¼ 1=2 z ¼ 3=4 z ¼ 1

qþ400ðzÞ 3.141592 3.100743 2.920648 2.799232 2.671269

q�400ðzÞ 0.123665 0.117603 0.078869 0.044545 0.0

q400ðzÞ 3.017927 2.983141 2.841779 2.754687 2.671269



Table 4

Scattering phase function data

‘ (2‘þ 1)b‘

0 1

1 2.00916

2 1.56339

3 0.67407

4 0.22215

5 0.04725

6 0.00671

7 0.00068

8 0.00005

Table 3

Optical thickness and single scattering albedo

r Dzr r0;r

1 1.0 0.65

2 2.0 0.70

3 3.0 0.75

4 4.0 0.80

5 5.0 0.85

6 6.0 0.90

M. Pimenta de Abreu / Journal of Computational Physics 197 (2004) 167–185 181
In Table 5, we present numerical results for the plane albedo and transmission factors defined in [13]. We

are happy to notice that our S32 results in Table 5 for the albedo and transmission factors are in very close

agreement to corresponding converged FN results extracted from the work of Devaux et al. [13]. To il-
lustrate the numerical merit of our mathematical method in the SN framework, we also show in Table 5

corresponding S32 results for the above quantities generated by the Oak Ridge National Laboratory one-

dimensional SN computer code ANISN [16]. The ANISN results in Table 5 were generated with a fine-mesh

grid defining six mesh cells per unit vertical optical length and were also extracted from the work of Devaux

et al. It is noteworthy that our results for the albedo factor are as accurate as those generated by ANISN,

while ANISN results for the transmission factor are less accurate than those generated by our method. This

happens because the model atmosphere is optically thick (z6 ¼ 21) and ANISN uses a first-order polyno-

mial approximation – the diamond-difference approximation [15,25] – for the optical dependence of the
intensity of the radiation field in the SN Eq. (22). The effect of the optical truncation error in the intensity is

more pronounced in the regions of the medium far from the boundary source (as we move from left to

right), and this explains the loss of accuracy in the transmission factor results generated by ANISN. In

contrast, the results generated by our method do not degrade because our SN method is free from optical

truncation error.
Table 5

Numerical results for albedo and transmission factors

b Albedo Transmission

Present method Converged FN ANISN Present method Converged FN ANISN

0 0.10002 0.1001 0.1001 7.4185E) 05a 7.419E) 05 7.391E) 05

1 0.08059 0.08058 0.08059 8.5431E) 05 8.543E) 05 8.512E) 05

2 0.07053 0.07052 0.07051 9.3074E) 05 9.307E) 05 9.274E) 05

a Should be read as 7.4185� 10�5.
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4.1.3. Test problem 3

The third problem is a plane-parallel, constant energy version of a neutron beam transport problem basic

to the design and optimisation of a neutron filter assembly for BNCT applications [26,37]. The problem here
is to determine the angular distribution of neutrons on the right boundary of the filter assembly (z ¼ zRÞ due
to a high-energy neutron beam normally incident upon the left boundary (z ¼ z0Þ. With that angular dis-

tribution determined, we might evaluate quantities of interest such as beam attenuation and current-to-flux

ratio at z ¼ zR. For the filter assembly, we have considered a three-block filter with materials and dimensions

adapted from the assembly described in a work of Ingersoll et al. for studies of potential conversion of the

Tower Shielding Facility (TSF) at Oak Ridge National Laboratory to BNCT applications [22]. Here, the

leftmost (reactor side) block is an 80 cm-thick layer of aluminium, the middle block is a 9.2 cm-thick layer of

sulfur and the rightmost (patient side) block is a 10 cm-thick layer of bismuth. The boundary conditions for
this third problem are defined by z0 ¼ 0, z3 ¼ 99:2 cm, w0 ¼ 1 � 1011 cm�2 s�1 steradian�1, l0 ¼ 1 and we

have chosen c0ðlÞ ¼ 1 � 109 l2 cm�2 s�1 steradian�1, l > 0, to represent a continuously distributed, for-

wardly peaked component in the high-energy incident beam. As the constant energy assumption leads to a

poor representation of the scattering events taking place (neutron energy losses are of the very greatest

importance here), this third problem is of theoretical rather than practical value. So, we feel free to select a

representative energy from the high-energy neutron beam and, for the select energy, generate temperature-

dependent neutron cross-sections from the online version of the EvaluatedNuclearData File library (ENDF/

B-VI,MF¼ 3,MT¼ 1,2), available at http://www-nds.iaea.org.We remark that we have neglected resonance
and nonelastic contributions to the cross-sections to facilitate data handling. Since the source of the neutron

beam is a nuclear fission reactor (TSF), we choose 1 MeV of energy and we generate the 300 K macroscopic

cross-sections (in cm�1) provided in Table 6. In Table 7, we tabulate the scattering phase function data for
Table 6

Macroscopic cross-sections

r ¼ 1 (Al) r ¼ 2 (S) r ¼ 3 (Bi)

rt;r 0.143731 0.067836 0.147094

r0;r 0.141566 0.067446 0.145463

Table 7

Scattering phase function data

‘ b‘;1 (Al) b‘;2 (S) b‘;3 (Bi)

0 1 1 1

1 3.14359E) 1a 0.30940E+0 1.53700E) 1

2 9.35187E) 2 0.15601E+0 1.37000E) 1

3 6.74197E) 3 3.42150E) 3 1.22100E) 1

4 7.23405E) 4 4.72620E) 3 4.25600E) 2

5 1.35765E) 5 4.14010E) 5

6 9.26126E) 6 1.90490E) 4

7 2.36402E) 8

8 3.60216E) 8

9 8.05308E) 8

10 1.07452E) 8

11 3.75038E) 8

12 3.88242E) 8

13 1.49097E) 8

14 2.74337E) 8

15 4.91905E) 8

16 3.65227E) 8

a Should be read as 3.14359� 10�1.

http://www-nds.iaea.org


Table 8

Numerical results for the diffuse component wd
199ðz3;lÞ

l wd
199ðz3; lÞ l wd

199ðz3;lÞ

l4 5.47061477E+09 l38 1.04862179E+10

0.1 5.95413167E+09 0.6 1.09398636E+10

l10 6.51454734E+09 l46 1.14302885E+10

0.2 7.10267319E+09 0.7 1.18667439E+10

l17 7.60969449E+09 l55 1.23781367E+10

0.3 8.05397797E+09 0.8 1.28342778E+10

l23 8.48861871E+09 l66 1.33497501E+10

0.4 8.99564725E+09 0.9 1.37825913E+10

l30 9.45611393E+09 l81 1.42908573E+10

0.5 9.97726223E+09 1.0 1.45482592E+10
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each layer. These data were extracted directly from ENDF/B-VI, MF¼ 4, MT¼ 2 at 1 MeV and 300 K. In

Table 8, we present results for the diffuse component wd
199ðz3; lÞ of our approximate solution w200ðz3; l). We

remark that that the labelled directions lm, m 2 C � f4; 10; 17; 23; 30; 38; 46; 55; 66; 81g, in Table 8 are po-
sitive directions in the S200 Gauss-Legendre quadrature set. Therefore, wd

199ðz3; lmÞ ¼ wd
3;mðz3Þ; m 2 C, where

the angular fluxes wd
3;mðz3Þ are exactly those generated by the ESGF method, viz result (41). The values for

wd
199ðz3; lmÞ, m 2 C, in Table 8 are in very close agreement to corresponding fine-mesh S200 results generated

with an ANISN-like code developed some years ago by the present author and former collaborators [8].

At this point we proceed to Section 5, where we give a discussion and directions for further developments

and future work.
5. Discussion

We have described a computational method for approximately solving multislab radiation transport

problems with azimuthal symmetry, with anisotropic scattering of arbitrary (Legendre) order and with no

internal source of radiation other than redistribution by scattering. We have assumed that the multislab

domain is irradiated from one side with a (rather) mixed neutral particle beam. We have considered here a

mathematical formulation general enough to accommodate a number of basic and important problems in

neutron and photon transport theory, as well as in radiative heat transfer. From a conceptual viewpoint,
the computational method described in this article is a threefold method, in the following sense: (i) the

multislab target problem (1)–(3) is suitably Chandrasekhar decomposed into two basic transport problems

– the uncollided transport problem (4) and (5) with left singular boundary conditions and the diffusive

transport problem (6) and (7) with regular boundary conditions; (ii) the uncollided problem is considered as

is and it is solved rather easily and straightforwardly, whilst the diffusive problem is considered approxi-

mately through a standard SN formulation and the approximate SN diffusive problem is solved exactly with

SN analytical and numerical methods and (iii) solutions to the two problems are composed through basic

relations in order to yield an approximate solution to the multislab target problem. From a practical
standpoint, the method described here is a constructive method designed to conform to the type of incident

beam and to the quantities we are looking at. Owing to its two-component nature, our method can be used

for generating spatially localized quantities, such as the angular distribution of radiation leaving the

multislab domain, without having to worry about the detailed distribution of radiation in space. This is

accomplished by the numerical component of our computational method. When the detailed space-angle

distribution of radiation on a specific layer is required, the layer-edge values generated by the numerical

component for the layer of interest are the inputs to a local reconstruction scheme of the angular distri-

bution of radiation at any position on the layer of interest. This is accomplished by the analytical
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component of our computational method. The reconstruction scheme is local in that computations are

confined to the layer of interest. So, we can get space-angle distributions of radiation over as many layers as

we wish on a layer-by-layer basis.
We believe that the method described in this article can be substantially improved as regarding com-

putational efficiency. For example, in Section 2, we have stated that the angular components ar;mðmr;iÞ of the
elementary solutions (25) satisfy the relation ar;mðmr;iÞ ¼ ar;�mð�mr;iÞ for all r, m and i. Let us explore one

such relation a bit further. The above relation for the angular components can be readily obtained from a

simple parity analysis of the SN Eq. (27). It can be obtained by replacing mr;i with ð�mr;iÞ; lm with ð�lmÞ and
using the parity relations P‘ð�lmÞ ¼ ð�1Þ‘P‘ðlmÞ and g0r;‘ð�mr;iÞ ¼ ð�1Þ‘g0r;‘ðmr;iÞ for Legendre and

Chandrasekhar polynomials, respectively. And so it could have been used in our program to save some

computer memory by storing only half of the separation constants (positive or negative) and the corre-
sponding angular components. But, instead of formulating an eigenvalue problem defined in the full-range

l-interval [)1,1] (as we did in Section 2) and only then saving some computer memory, we are rather

thinking of implementing the half-range eigenvalue formulation for mr;i and ar;mðmr;iÞ described by Siewert in

a recent article [33] in connection to double Gauss (DPN Þ quadrature sets [15,25,35]. With this half-range

formulation, we expect to increase the computational efficiency of our program and to report on SN results

for the model problems considered in Section 4 (and others) for N about twice as higher as those in Section

4 in near future.

We are currently working on the extension of the method described in this article to target problems
defined on a multislab domain with interacting boundaries [5,35]. This would enlarge the applicability of our

method to problems of theoretical and practical interest not covered so far, e.g. radiative transfer and

neutron transport problems with specularly and/or diffusely reflective boundary conditions [5,15,25,35].

Target problems with reflecting boundaries are generally more complicated to formulate and solve than

those with transparent ones, for the implicit boundary conditions induced. We intend to report our findings

on these lines in forthcoming articles.
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